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tationary phase retention

a  b  s  t  r  a  c  t

Unlike  the  existing  2-D pseudo-ring  model  for  helical  columns  undergoing  synchronous  type-J  planetary
motion  of counter-current  chromatograph  (CCC),  the  3-D “helix”  model  developed  in  this  work  shows
that  there  is a  second  normal  force  (i.e.  the  binormal  force)  applied  virtually  in  the  axial  direction  of  the
helical  column.  This  force  alternates  in  the  two  opposite  directions  and  intensifies  phase  mixing  with
increasing  the  helix  angle.  On  the  contrary,  the  2-D spiral  column  operated  on  the  same  CCC  device
lacks  this  third-dimensional  mixing  force.  The  (principal)  normal  force  quantified  by  this  “helix”  model
has been  the  same  as  that  by  the  pseudo-ring  model.  With  ˇ >  0.25,  this  normal  centrifugal  force  has
been  one-directional  and  fluctuates  cyclically.  Different  to the spiral  column,  this  “helix”  model  shows
hase mixing
elical column
piral column
ulti-layer column

that  the  centrifugal  force  (i.e.  the  hydrostatic  force)  does  not  contribute  to  stationary  phase  retention
in  the  helical  column.  Between  the  popular  helical  columns  and  the  emerging  spiral  columns  for type-J
synchronous  CCC,  this  work  has  thus  illustrated  that  the  former  is  associated  with  better  phase  mixing
yet  poor  retention  for the  stationary  phase  whereas  the  latter  has  potential  for  better  retention  for  the
stationary  phase  yet  poor  phase  mixing.  The  methodology  developed  in  this  work  may  be  regarded  as a
new platform  for  designing  optimised  CCC  columns  for  analytical  and  engineering  applications.
. Introduction

The core specialist technology of a counter-current chromatog-
aphy (CCC) system consists of device type and column geometry.
or the device type (also termed as centrifuge scheme), the syn-
hronous type-J CCC provides a better balance between application
eeds and marketing reality. The type-J CCC device has been exten-
ively compared with the other types (e.g. cross-axis, type-I and
on-synchronous) over the past 30 years. Interestingly, its impor-
ance has been strengthened rather than weakened as a result of
hese comparisons, with even increasing applications and device
izes [1–6]. For the column geometry, the multi-layer helical col-
mn  (Fig. 1A) stood out from all the known types of column
eometry (e.g. toroidal and spiral columns) early on [3,7–10]. Mul-
ilayer columns on type-J CCC devices have been most widely
sed not only in laboratory research and development, but also

or preparative and in commercial large-scale production [5].

Against this background, it has been essential to comprehend
he unique physical nature for two immiscible liquid phases con-
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tained in the multi-layer helical column undergoing a synchronous
type-J planetary motion. Specifically, it needs to be understood how
a liquid stationary phase is retained in the column, and how and to
what extent periodical phase mixing and settling occur.

To explain the retention of a liquid stationary phase, a long-
held belief has been that “all objects with different densities, either
lighter or heavier than the suspending medium, present in the
rotating coil are driven toward the head of the coil” [11]. This type
of forces has vaguely been termed as the Archimedean screw force
(effect) [12–14].  According to our more recent work, under the
type-J planetary rotation and with  ̌ > 0.5, the internal surface of
the column exerts a drag force (a hydrodynamic force) primarily in
the head-to-tail (not tail-to-head) direction, irrespective of heavy
or light phase. Nevertheless, that work showed that this drag force,
to a large extent, applies to the heavy phase and to a less extent
to the light phase (see Fig. 4 of Ref. [13]). This solid-to-liquid drag
force (i.e. the Archimedean screw force) can be arranged to coun-
teract the liquid-to-liquid drag force caused by flowing the mobile
phase through the stationary phase, and consequently the liquid
stationary phase could be retained throughout the tubular path of
the column to a reasonable extent. In addition, the Archimedean

screw force is monotonically related to the ˇ-value for this device
type, especially when  ̌ ≥ 0.5 [13]. These findings have more cor-
rectly described the working of CCC for retaining a liquid stationary
phase and can explain why stationary phase retention reduces with
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Nomenclature

aB-helix value of acceleration vector in binormal directions
on the helical coil

aB-ring value of acceleration vector in binormal directions
on the pseudo-ring coil

aB-spiral value of acceleration vector in binormal directions
on the spiral coil

ahelix acceleration vector for any location on the helical
coil

aN-helix value of acceleration vector in normal directions on
the helical coil

aN-ring value of acceleration vector in normal directions on
the pseudo-ring coil

aN-spiral value of acceleration vector in normal directions on
the spiral coil

aring acceleration vector for any location on the pseudo-
ring coil

at-helix value of acceleration vector in tangential directions
on the helical coil

at-ring value of acceleration vector in tangential directions
on the pseudo-ring coil

at-spiral value of acceleration vector in tangential directions
on the spiral coil

B̂helix unit binormal vector for any location on the helical
coil

B̂ring unit binormal vector for any location on the pseudo-
ring coil

i unit vector at the x-axis direction in the Cartesian
coordinate system

j unit vector at the y-axis direction in the Cartesian
coordinate system

k unit vector at the z-axis direction in the Cartesian
coordinate system

N̂helix unit normal vector for any location on the helical
coil

N̂ring unit normal vector for any location on the pseudo-
ring coil

R rotation radius of the rotor
Shelix location vector for any location on the helical coil
Sring location vector for any location on the pseudo-ring

coil
Sx value of location vector at the x-axis direction in the

Cartesian coordinate system
Sy value of location vector at the y-axis direction in the

Cartesian coordinate system
Sz value of location vector at the z-axis direction in the

Cartesian coordinate system
t time
T̂helix unit tangential vector for any location on the helical

coil
T̂ ring unit tangential vector for any location on the

pseudo-ring coil
ut-helix value of velocity vector in tangential directions on

the helical coil
ut-ring value of velocity vector in tangential directions on

the pseudo-ring coil
ut-spiral value of velocity vector in tangential directions on

the spiral coil
uring velocity vector for any location on the pseudo-ring

coil
uhelix velocity vector for any location on the helical coil
x x-axis in the Cartesian coordinate system (see Fig. 2)

y y-axis in the Cartesian coordinate system (see Fig. 2)
z z-axis in the Cartesian coordinate system (see Fig. 2)
x′ x′-axis in the Cartesian coordinate system for the

coil self-rotation (see Fig. 2)
y′ y′-axis in the Cartesian coordinate system for the

coil self-rotation (see Fig. 2)
z′ z′-axis in the Cartesian coordinate system for the coil

self-rotation (see Fig. 2)

Greek letters
 ̨ helix angle of the helical coil with 0 <  ̨ < �/2

 ̌ radius ratio of the bobbin self-rotation to the rotor
rotation (  ̌ = r/R)

� elapsed rotation angle of the rotor (� > 0 for counter-
clockwise rotation)

ϕ angular location for any position on CCC coil

ω rotational angular speed of the rotor where ω = d�/dt

increasing mobile phase flow rate and often increases with increas-
ing rotational speed of the rotor.

The locus of a type-J planetary motion is always and only two-
dimensional. For synchronous type-J planetary motion (Fig. 2C),
this is described by Ito [15] as,{

x = R cos � + ˇR cos(2�)
y = R sin � + ˇR sin(2�)

(1)

Whilst Eq. (1) has correctly described the locus of type-J syn-
chronous planetary motion, an improved understanding for
physical forces leading to stationary phase retention and the
mixing-settling pattern of the two liquid phases requires the infor-
mation on the column geometry. These effects can be understood
by velocity and acceleration vectors in the tangential direction and
directions normal to the tangential [13]. Notably, the velocity vector
at the tangential direction can be used to describe the solid surface-
to-liquid drag force (i.e. the Archimedean screw force) which is
a characteristic force leading to stationary phase retention in the
CCC column. The net acceleration vector at the tangential direc-
tion determines if hydrostatic centrifugal force contributes to the
retention of stationary phase, whereas the acceleration vectors at
directions normal to the tangential reflect the mixing-settling pat-
tern of the liquid phases contained in the column.

By assuming the CCC column as a pseudo-ring coil, location vec-
tor on such a column undergoing the dynamic motion [i.e. Eq. (1)]
can thus be quantified in the 3-D Cartesian coordinate system as,

Sring = R[cos � +  ̌ cos(2�  + ϕ)]i

+ R[sin � +  ̌ sin(2�  + ϕ)]j + 0k (2)

In Eq. (2),  the initial angle for location on the column, ϕ, is added
into Eq. (1) to generalise the original model derived from Eq. (1).
This generalization is necessary as it allows for distinguishing dif-
ferent locations on the coil. For the pseudo-ring model the physical
property on each location is identical except for timing, but this is
not the case for other types of coil geometry such as the spiral coil
[13]. For the helical coil geometry the, introduction of this angular
location allows for mathematical treatment on this coil geometry
[e.g. Eqs. (9)–(11) below]. Of course, Eq. (1) can be regarded as being
for the location described by Eq. (2) at ϕ = 0.
The “spiral” model developed for the spiral column (Fig. 1C)
on a synchronous type-J device can be used to demonstrate the
importance of such geometry [13]. This “spiral” model simplifies
the spiral column into a portion of the two-dimensional, infinitely
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Fig. 1. An illustration of (A) the helical column, (B) the pse

hin Archimedean spiral. Quantitative analyses showed that this
olumn geometry on synchronous type-J CCC is associated with a
et tangential centrifugal force along the spiral coil path (termed
s the tangential centrifugal force) and this hydrostatic force can
e arranged to contribute to stationary phase retention along with
he Archimedean screw force [13,16].  This finding supported exper-
mental observations that satisfactory stationary phase retention
an hardly be achieved within multi-layer helical columns for aque-
us polymer two-phase systems (ATPSs) [13,17,18] whereas this
etention problem can be resolved with spiral columns on syn-
hronous type-J CCC devices [4,16,19]. Even with this beneficial
hysical effect, however the acceleration vector at the normal
irection does not show noticeably improvement on phase mix-

ng intensities with the spiral column [20]. In the literature, this
oor mixing situation has largely been attributed to the low mass

ransfer rate for large molecules such as proteins [4].  Of course, one
ould argue for the same mass transfer problem for helical columns,
ut a conceivable defence might be that such data are not available

ig. 2. An illustration of the “helix” model. (A) 3-D illustration in x′–y′–z Cartesian
oordinate system for tangential, normal and binormal vectors, (B) illustration for
elix angle (˛) on the helical coil, and (C) illustration for the rotation of the rotor
n  the x–y Cartesian coordinate system and the self-rotation of the coil on the x′–y′

artesian coordinate system with type-J synchronous planetary motion.
ing column and (C) the spiral column studied in this work.

for helical columns due presumably to the low stationary phase
retention for this type of columns. Interestingly, our results in the
present paper will show that phase mixing in the spiral column is
likely to be worse off as compared with the helical column.

Over the past three decades the most popular 3-D multilayer
helical column has been consistently modelled as an infinitely thin,
closed 2-D pseudo ring (see Fig. 1B for such an imaginary circular
column). With such a simplified geometry, normal and radial vec-
tors are identical. The unit vectors for such geometry at tangential,
normal and binormal directions can be summarised as,

T̂ ring = − sin(2�  + ϕ)i+ cos(2�  + ϕ)j + 0k (3A)

N̂ring = − cos(2�  + ϕ)i − sin(2�  + ϕ)j + 0k (3B)

B̂ring = 0i + 0j + k (3C)

By all means, Eqs. (3A)–(3C) can be derived using Eqs. (9)–(11).
Using the geometric information expressed in Eqs. (3A)–(3C), the
relevant vectors for the pseudo-ring model in the 3-D Cartesian
coordinate system can be expressed as (see also Ref. [21]),

uring =
[

∂Sring

∂�

]
ˇ,ϕ

· d�

dt
= −ωR[sin � + 2  ̌ sin(2� + ϕ)]i

+ ωR[cos �  + 2  ̌ cos(2�  + ϕ)]j + 0k (4)

aring =
[

∂2Sring

∂�2

]
ˇ,ϕ

·
(

d�

dt

)2

= −ω2R[cos � + 4  ̌ cos(2�  + ϕ)]i

− ω2R[sin � + 4  ̌ sin(2�  + ϕ)]j + 0k (5)

The corresponding vectors at the tangential, normal and bino-
mial directions for the pseudo-ring model can be obtained as,

uring = (uring · T̂ ring)T̂ ring

+ (uring · N̂ring)N̂ring + (uring · B̂ring)B̂ring = ωR[cos(� + ϕ)

+ 2ˇ]T̂ ring − ωR sin(� + ϕ)N̂ring + 0B̂ring (6)

aring = (aring · T̂ ring)T̂ ring + (aring · N̂ring)N̂ring + (aring · B̂ring)B̂ring

= ω2R sin(� + ϕ)T̂ ring + ω2R[cos(� + ϕ) + 4ˇ]N̂ring + 0B̂ring

(7)

On the one hand, this pseudo-ring model has successfully

explained the effects of the rotor’s rotation speed (ω) and the ˇ
value on stationary phase retention and phase mixing intensities.
On the other hand, the pseudo-ring model simplifies the 3-D helical
geometry into a 2-D planetary geometry, and so cannot shed any
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ight on the effect of the helix angle on the performance on type-J
CC in applications typically in chromatographic separations. Given
hat an essential feature of the CCC column is to possess both “head”
nd “tail” terminals, such a “ring” model should be regarded as
eing physically oversimplified. The aim of the present work is
o model the multi-layer helical column as a three-dimensional,
nfinitely thin and single layer 3-D helix (hence termed as “helix”

odel) and to quantitatively compare the helical column with
he pseudo-ring column and the spiral column for physical forces
etermining the working of CCC.

. Establishment of the “helix” model for the helical
olumn undergoing type-J synchronous planetary motion

The column geometry is simplified as a curve in the 3-D Carte-
ian coordinate (see Fig. 2). By introducing the helix angle (˛), the
ocation vector for the left-handed helical coil can be resolved as,

helix = Sxi + Syj + Szk = [R cos � + ˇR cos(2�  + ϕ)]i

+ [R sin � + ˇR sin(2�  + ϕ)]j + (2�  + ϕ)ˇR · tan(˛)k (8)

Unit tangential vector (T̂helix), unit normal vector (N̂helix) and
nit binormal vector (B̂helix) for the helical coil geometry are
btained as follows,

helix = ∂Shelix

∂ϕ
·
∣∣∣∣∂Shelix

∂ϕ

∣∣∣∣
−1

= 1√
1 + tan2(˛)

[− sin(2�  + ϕ)i

+ cos(2�  + ϕ)j − tan(˛)k] (9)

̂helix = ∂Thelix

∂ϕ
·
∣∣∣∣∂Thelix

∂ϕ

∣∣∣∣
−1

= − − cos(2�  + ϕ)i − sin(2�  + ϕ)j + 0k (10)

helix = T̂helix × N̂helix∣∣∣T̂helix × N̂helix

∣∣∣
= tan(˛)√

1 + tan2(˛)

[
sin(2�  + ϕ)i + cos(2�  + ϕ)j + 1

tan(˛)
k
]
(11)

Each point on the helical coil undergoes type-J synchronous
lanetary motion, and so its velocity and acceleration vectors
re the same as those inherent to the pseudo-ring model on the
–y–z Cartesian coordinate system, as quantified by Eqs. (4) and
5). As such, the respective vectors at the tangential, normal and
inormal directions for any points on the helical coil undergoing
he synchronous type-J planetary motion can be obtained as fol-
ows.

helix = (uring · T̂helix)T̂helix + (uring · N̂helix)N̂helix

+ (uring · B̂helix)B̂helix = ωR[cos(� + ϕ) + 2ˇ]√
1 + tan2(˛)

T̂helix
− ωR sin(� + ϕ)N̂helix

+ ωR · tan(˛)[cos(3� + ϕ) + 2  ̌ · cos(4�  + 2ϕ)]√
1 + tan2(˛)

B̂helix (12)

nd
atogr. A 1218 (2011) 5108– 5114 5111

ahelix = (aring · T̂helix)T̂helix + (aring · N̂helix)N̂helix

+ (aring · B̂helix)B̂helix = ω2R · sin(� + ϕ)√
1 + tan2(˛)

T̂helix

+ ω2R[cos(� + ϕ) + 4ˇ]N̂helix

− ω2R · tan(˛) sin(� + ϕ)√
1 + tan2(˛)

B̂helix (13)

3. Results and discussion

For any types of CCC columns, the level of stationary phase
retention is determined by the Archimedean screw force (i.e. the
hydrodynamic force) and the tangential centrifugal force (i.e. the
hydrostatic force for high-speed CCC) (if any). The Archimedean
screw force is represented by the tangential velocity vector [13,14]
and these are shown in Eqs. (14)–(16) for the pseudo-ring column,
the helical column and the spiral column respectively (Table 1). The
tangential centrifugal forces for the pseudo-ring column, the heli-
cal column and the spiral column are described in Eqs. (17)–(19)
respectively (Table 1).

The phase mixing pattern and intensity within any CCC columns
can be quantified by the two  centrifugal forces perpendicular to
the tangential direction of the coil path. These are the (principal)
normal centrifugal force and the binormal centrifugal force. The
(principal) normal force is located on the flat pseudo-ring plain, the
flat spiral coil plain, or in the similar directions for the helical coil.
These are described in Eqs. (20)–(22) respectively for the pseudo-
ring column, the helical column and the spiral column (Table 1). The
binormal centrifugal force is almost perpendicular to the pseudo-
ring, to the spiral plain, or approximately in the axial direction of
the helical column (see Fig. 2A). The binormal centrifugal force is
described by Eqs. (23)–(25) for the pseudo-ring column, the helical
column and the spiral column respectively (Table 1), but except for
the helical column their values are invariably zero.

Between the three models, the “helix” model can be degener-
ated to the pseudo-ring model when the helix angle  ̨ = 0. This is so
from ut-helix [Eq. (15)] to ut-ring [Eq. (14)], from at-helix [Eq. (18)] to
at-ring [Eq. (17)], and from aB-helix [Eq. (24)] to aB-ring [Eq. (23)] (all
the equations are in Table 1). The “spiral” model merges with the
pseudo-ring model at ϕ → ∞.  This is evident from ut-spiral [Eq. (16)]
to ut-ring [Eq. (14)], from at-spiral [Eq. (19)] to at-ring [Eq. (17)], and
from aN-spiral [Eq. (22)] to aN-ring [Eq. (20)] (all the equations are in
Table 1).

3.1. Centrifugal force does not contribute to stationary phase
retention in 3-D helical columns

In the tangential direction of a column path, the stationary phase
is subjected to net balanced (either hydrostatic or hydrodynamic)
physical forces, the interplay of which determines the level of sta-
tionary phase retention. As was previously verified [13,14,21] and is
shown in Eq. (17) of Table 1, the net tangential centrifugal force (i.e.
the hydrostatic force) for the pseudo-ring column in high speed CCC
fluctuates cyclically and its net value over each rotation of the rotor
is always zero. Eq. (18) of Table 1 shows that there is no net hydro-
static force at tangential directions for the helical column as well.
Clearly, the centrifugal force does not contribute to stationary phase
retention for both the pseudo-ring column and the helical column.
This result has been different to the popular opinion in this research
area as there has been a vague understanding that centrifugal force

causes the unusual stationary phase retention in the CCC columns.
Perhaps there has been confusion between the hydrostatic centrifu-
gal force and the hydrodynamic Archimedean screw force among
the practitioners of the CCC technology. Indeed, the more correct
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Table  1
A list of equations for describing stationary phase retention and phase mixing within the pseudo-ring column, the helical column and the spiral column undergoing type-J
synchronous planetary motion of counter-current chromatography.

(1) The Archimedean screw force (the hydrodynamic force)
The pseudo-ring column ut-ring = ωR[cos(� + ϕ) + 2ˇ] (14)

The  helical column ut-helix = ωR√
1 + tan2(˛)

[cos(� + ϕ) + 2ˇ] (15)

The  spiral column ut-spiral = ωR
ϕ√

1 + ϕ2

[
cos(� + ϕ) + 2  ̌ + sin(� + ϕ)

ϕ

]
(16)

(2)  The tangential centrifugal force (the primary hydrostatic force)
The pseudo-ring column at-ring = ω2R · sin(� + ϕ) (17)

The  helical column at-helix = ω2R√
1 + tan2(˛)

· sin(� + ϕ) (18)

The  spiral column at-spiral = ω2R
ϕ√

1 + ϕ2
·
[

sin(� + ϕ) − cos(� + ϕ) + 4ˇ

ϕ

]
(19)

(3)  The normal centrifugal force (the primary hydrostatic force)
The pseudo-ring column aN-ring = ω2R[cos(� + ϕ) + 4ˇ] (20)
The  helical column aN-helix = ω2R[cos(� + ϕ) + 4ˇ] (21)

The  spiral column: aN-spiral = ω2R
ϕ√

4 + ϕ2

[
cos(� + ϕ) + 4  ̌ + 2 sin(� + ϕ)

ϕ

]
(22)

(4)  The binormal centrifugal force (the primary hydrostatic force which is exactly or approximately perpendicular to the flat “ring”)
The pseudo-ring column aB-ring = 0 (23)

The  helical column a = − ω2R · tan(˛)

1 +
sin(� + ϕ) (24)
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the increase of helix angle, this alternating binormal force (roughly
in the axial direction of a helical column) becomes intensified. It
is obvious that high helix angles can cause high levels of mixing
intensity in the axial direction of a helical coil.
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ole for the tangential centrifugal force in contributing to stationary
hase retention was unravelled only recently [13,14].

An increase of the helix angle reduces the amplitude of this tan-
ential waving force for helical columns. Theoretically, this could
lightly lessen the swish-swash movement for the stationary phase
n the column and could somewhat worsen phase mixing in the
principal) normal direction. With a low helix angle, it is almost
ertain that the ‘ring’ and the ‘helix’ models are inter-replaceable
n describing the tangential centrifugal force [i.e. Eqs. (17) and (18)
f Table 1].

.2. The effect of the helix angle on stationary phase retention

As has been well understood, stationary phase retention can be
mproved by increasing the Archimedean screw force (the primary
ydrodynamic force) [13,14], which is described by the tangential
elocity for the helical coil Eq. (15) and that for the pseudo-ring
oil Eq. (14) (in Table 1). Both Eqs. (14) and (15) of Table 1 indi-
ate that an increase of the rotation speed for the rotor or that of
he  ̌ value monotonically augment the Archimedean screw force
nd hence would improve the stationary phase retention. Eq. (15)
f Table 1 shows that, with  ̌ > 0.5 an increase of the helix angle
educes the Archimedean screw force, and this effect can become
ore detectable when the helix angle  ̨ becomes large.

.3. The effect of the helix angle on phase mixing

The phase mixing intensity and pattern are determined by the
principal) normal acceleration vector and the binormal acceler-
tion vector. Eqs. (20) and (21) of Table 1 show that the normal
cceleration vectors for the pseudo-ring column and the helical
olumn are identical. With  ̌ > 0.25, this normal force does not alter
irections but alter its magnitude. Consequently, the mixing inten-
ity for the phases would have been weak and only wavelike mixing
ould prevail [16,22,23].

However, the binormal acceleration vector for the helical col-

mn  [i.e. Eq. (24) of Table 1] is completely different to that for the
seudo-ring column [i.e. Eq. (23) of Table 1]. The helical column reg-

sters a cyclical force normal to both the tangential direction and
he (principal) normal direction, which is approximately in the axial
 tan2(˛)
(25)

direction of a helical column. For the pseudo-ring column, there is
simply no such a force in that direction. Undoubtedly, this binor-
mal  force can improve phase mixing in the axial direction of the
helical column. Fig. 3(A) compares this binormal acceleration force
for small helix angles at 1.09◦, 1.64◦ and 2.19◦ (with an equal incre-
ment of 0.55◦) along with the normal acceleration force, whereas
Fig. 3(B) makes similar comparisons for large helix angles at 15◦,
30◦ and 45◦ (with an equal increment of 15◦) respectively. With
Fig. 3. Influence of helix angle on binormal centrifugal force of the helical column
under the column/device parameter  ̌ = 0.863, � = 0. The normal centrifugal force is
also  plotted to show that it is not affected by the change of helix angle. (A) Helix
angle at 1.09◦ , 1.64◦ and 2.19◦ . (B) Helix angle at 15◦ , 30◦ and 45◦ .
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.4. Comparison between the helical and the spiral columns

Using the theoretical framework established in the present
nd the previous work [13], it is possible to compare station-
ry phase retention and phase mixing between the spiral and
elical columns. The equations for comparing these two types
f column geometries are paired as Eqs. (15) and (16), Eqs.
18) and (19), Eqs. (21) and (22), and Eqs. (24) and (25) in
able 1.

.4.1. Stationary phase retention
Both the Archimedean screw force (the hydrodynamic force)

nd the tangential centrifugal force (the primary hydrostatic force)
an contribute to the stationary phase retention in a CCC column.

hen  ̌ > 0.5 the tangential velocity vector for the helical column
nvariably points to the self-rotation direction of the helical coil
Eq. (15) in Table 1] and shows the presence of net hydrodynamic
orce (i.e. the Archimedean screw force) for retaining the stationary
hase in that direction.

The corresponding Archimedean screw force for the spiral col-
mn  [described by Eq. (16)] is virtually the same as that for
he helical column [described by Eq. (15) in Table 1]. This state-

ent is demonstrated by the following calculation. In order to
ompare the tangential velocity magnitude in a like-to-like foot-
ng between the helical column and the spiral column,  ̌ value
f the spiral coil is fixed at the same value as its helical coil
ounterpart. In this paper, a high value of  ̌ = 0.863 was arti-
cially used for the helical coil. The Archimedean constant for
he spiral coil was chosen as k = 0.1 cm and R = 10 cm (see Refs.
13,16] for such a spiral column). At  ̌ = 0.863, the correspond-
ng angular location was calculated as ϕ = 86.3 rad (or 4947◦). For
his pair of locations in the two column geometries with the
elix angle  ̨ = 0, the ratio between the two tangential velocities
T-spiral/uT-helix = 0.99. Of course, Eq. (15) in Table 1 shows that the
rchimedean screw force for the helix angle becomes weak as the
elix angle increases.

Eq. (18) in Table 1 shows that the net tangential centrifugal force
or the helical column is invariably zero. For the spiral column, the
angential centrifugal force [described by Eq. (19) in Table 1] can
oint to one direction for a range of locations, and so its net value
ecomes one-directional [13].

Both the tangential centrifugal force and the Archimedean
crew force for the spiral column can be arranged to work in
he same direction so that stationary phase retention can be
onsiderably improved with this type of column geometry. This
heoretical result can be consistently supported by experimen-
al results using spiral columns for ATPSs [4,16,19]. On the other
and, the stationary phase retention for the helical column can-
ot in anyway rely on the tangential centrifugal force, but is
etermined solely by the magnitude of Archimedean screw force
nd the intensity of this is weakened with increasing the helix
ngle.

Overall, the spiral column possesses properties for achieving
ood stationary phase retention for polar phase systems such as
TPSs, whereas the helical column tends to be deficient in retain-

ng a satisfactory level of stationary phase especially when the helix
ngle becomes large.

.4.2. Phase mixing pattern and intensity
The spiral column possesses the normal centrifugal force in the

piral plain [as shown by Eq. (22) in Table 1] which is perpendicular
o the tangential direction whereas there is no force causing phase
ixing in the direction perpendicular to the spiral plain [as shown
y Eq. (25) in Table 1]. The helical column is associated with two
rthogonal mixing forces [i.e. the normal centrifugal force shown
n Eq. (21) of Table 1] and the binormal centrifugal force shown
atogr. A 1218 (2011) 5108– 5114 5113

in Eq. (24) of Table 1]. With  ̌ > 0.25, the normal centrifugal force
for the helical column is invariably in one direction [Eq. (21) in
Table 1]. Consequently, phase mixing occurs wavelike at the inter-
phase and hence is low efficient. In order to compare the normal
hydrostatic force in a like-to-like footing between the helical col-
umn and the spiral column, again  ̌ value of the spiral coil is fixed at
the same value as for the helical column (see Section 3.4.1 above).
As a demonstration, a high value of  ̌ = 0.863 was used for the two
coil geometries. The Archimedean constant for the spiral coil was
chosen as being k = 0.1 cm and R = 10 cm (see Refs. [13,16] for such
a spiral CCC column). The corresponding angular location for the
spiral coil was  obtained from Eq. (22) of Table 1 as ϕ = 86.3 rad (or
4947◦). For this pair of comparable locations for the two column
geometries, the ratio between the two normal centrifugal forces
aN-spiral/aN-helix = 0.99. The indication thus is that, for small helix
angle, the phase mixing pattern and intensity between the helical
column and the spiral column in the normal direction are virtually
the same.

The second orthogonal mixing force for the helical column is
approximately in the axial direction of a helical coil. As shown in
Eq. (24) of Table 1, this alternating mixing force is intensified with
the increase of helix angle. Of course, there is no mixing tendency
in the binormal directions for the spiral coil.

Compared to the spiral column, the helical column possesses
an additional dimension of alternating phase mixing force and the
mixing intensity of this force increases with increasing the helix
angle.

3.4.3. Dilemma between the helical column and the spiral column
The helical column undergoing type-J synchronous planetary

motion has a propensity for achieving better phase mixing inside
the column, but suffers from the property associated with poor sta-
tionary phase retention. On the contrary, the spiral column has the
possibility for reaching satisfactory stationary phase retention, but
suffers from the tendency associated with less satisfactory level of
phase mixing.

These theoretical results can now be supported by a myriad of
experimental evidences in the literature (see, e.g. Table 1 of Ref.
[18] for an experimentally based summary). For instance, techno-
logical successes for multi-layer helical columns have been solely
for those easy-to-retain aqueous-organic two-phase phase sys-
tems, rather than for difficult-to-retain systems such as ATPSs. To
overcome the inherent restriction of helical columns on stationary
phase retention, spiral columns have been developed for consid-
erably improving stationary phase retention of ATPSs for dealing
with large molecules and/or nano-particles. With a sound theoreti-
cal basis, the present work shows clearly that such an improvement
in stationary phase retention using spiral columns has been at the
cost of complete loss of alternating phase mixing tendency in the
near axial direction of helical columns. It is therefore not surpris-
ing that efforts have been made to recover the loss of phase mixing
tendency in spiral columns and a more successful measure was
the construction of barricaded spiral channels for improving phase
mixing [20].

4. Conclusions

Based on the existing 2-D models for CCC columns, we have
established the 3-D physical model for the helical column (termed
as the helix model) undergoing type-J synchronous planetary
motion, and have used this model to understand the effect of helix

angle on the phase behaviour for the most popular multi-layer
helical column geometry.

It can be concluded that this 3-D helix model entails important
information that the existing 2-D pseudo-ring model lacks. Com-
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ared with the use of the presently popular 2-D pseudo-ring model
or helical columns, the advantages for using this 3-D helix model
re not just at a quantitative level, but more importantly at the
ualitative level.

This work may  have opened a new avenue for designing
ew CCC columns before committing to time-consuming, expen-
ive and more experience-orientated experimental adventures.
urthermore, the methodology demonstrated in this work can
e supplementary to experimental explorations for new column
esigns on Type-J CCC devices (see Refs. [24,25] for a series of such
fforts made recently). Based on known physical models for nearly
ll the types of CCC devices, the methodology pioneered in our
roup can be extended to other types of centrifuge devices operated
ither synchronously or non-synchronously. We  have now been
ut in a sound theoretical footing to confidently address seemingly
ifficult yet pragmatic questions such as “what might be the gains
or using cross-axis coil planet centrifuge as compared to type-J
lanetary motion?” and “are there “ideal” column geometries for a
CC device type?”.
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